Indirizzo di studi: Informatica e sistemi di comunicazione
Specializzazione: Data Engineering
Modulo: Analyse des données

Descrizione del corso

Tornare al modulo Machine Learning

  • Obiettivi

    At the end of the lecture the student is able to:

    • Identify use cases for machine learning techniques.
    • Understand the concepts of learning from data, supervised vs. unsupervised learning, generative vs. discriminative classification.
    • Understand the basic principles of machine learning algorithms, including k-nearest neighbors classifier (KNN), k-means clustering, Bayes classifier, decision trees, support vector machines (SVM), artificial neural networks (ANN), convolutional neural networks (CNN).
    • Understand how to combine multiple features and classifiers to a multiple classifier system (MCS).
    • Use machine learning frameworks, such as Python's Scikit-Learn, to perform classification and clustering tasks on real data.
    • Apply k-fold cross-validation to optimize meta-parameters of the machine learning techniques.
  • contenuto

    --- Introduction ---

    Machine learning is a branch of artificial intelligence that studies algorithms, which are capable to ''learn automatically''. Such algorithms do not provide a ''hard-coded'' solution but instead learn from examples how to solve complex problems. Machine learning is heavily used in today's industry for tasks including classification (speech recognition, gesture recognition, image recognition), prediction (evolution of weather, stock market), verification/detection (biometric authentication), and data mining (clustering of complex data).

    --- Method ---

    The lecture is composed of both theoretical and practical sessions. The practical sessions consist of several individual exercises, as well as a larger group exercise. For programming, Python and its Scikit-Learn framework is used, among others.

    --- Content ---

    Part I - Basic Principles (20%)

    • Classification
    • Clustering

    Part II - Machine Learning Algorithms: Theory and Application (60%)

    • Bayes Classifier
    • Decision Trees
    • Support Vector Machines (SVM)
    • Artificial Neural Networks (ANN)
    • Convolutional Neural Networks (CNN)

    Part III - Advanced Applications (20%)

    • Advanced Machine Learning
    • Multiple Classifier Systems (MCS)

Metodo d'insegnamento e volume di lavoro

Insegnamento frontale (esercizi inclusi)
32 periodi
lavori pratici / laboratorio
48 periodi
esame (prova di fine modulo)
orale (20 minuto)

Titolo del corso

Anno di validità
2025-2026
Anno del piano degli studi
2o anno
Semestre
primavera
Programma
francese,bilingue
Indirizzo di studi
Informatica e sistemi di comunicazione
Lingua d'insegnamento
francese
ID del corso
B2C-MALA-S
Livello
Avanzato
Tipo di corso
fondamentale
Formazione
Bachelor

Metodi di valutazione

  • prove in itinere prove scritte, lavori pratici / valuatazione delle relazioni di laboratorio
  • esame (prova di fine modulo): orale (20 minuto)

Docente/i e/o coordinatore/i

Alain Jungo, Beat Wolf