



Office fédéral de l'environnement OFEV

Formation continue de la HES-SO Fribourg Certificat d'études avancées en génie parasismique

PROGRAMME PROVISOIRE CAS EN GENIE PARASISMIQUE 2025-2026

Liste des intervenants

Andrea Bernasconi, HEIG-VD, Yverdon	AB
Stéphane Commend, GeoMod SA, Lausanne/ HEIA, Fribourg	SC
Mylène Devaux, HEIA, Fribourg	MD
Blaise Duvernay, OFEV, Berne	BD
André Flueckiger, HEIG-VD, Yverdon	AF
Sven Heunert, OFEV, Berne	SH
Pierino Lestuzzi, Exigo Expertises SA, Ecublens/ Kurmann & Cretton SA, Monthey	PL
Clotaire Michel, Risk and Safety, Aarau	CM
Alessandro Paparo, T-Groupe, Lausanne	AP
Julien Pathé, la Socitété Coopérative 2401	JP
Yves Reuland, irmos technologies AG, Zurich	YR
Stéphane Rossier, Sollertia, Vevey	SR

Programme provisoire

	2025						2026											
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Module 1 (y.c. examens)																		
Module 2 (y.c. examens)																		
Module 3 (y.c. examens)																		
Travail Personnel																		

- → La durée d'un module est de 4 semaines
- → Les cours théoriques sont donnés à raison d'une journée par semaine, le mercredi
- → Chaque module est suivi d'une semaine d'interruption, puis d'une ou deux semaines d'examen. Les examens se déroulent également les mercredis
- → Dates des cours :

o Module 1 - cours 05.11.25 / 12.11.25 / 19.11.25 / 26.11.25 /

- examen 10.12.25 (écrit)

o Module 2 - cours 07.01.26 / 14.01.26 / 21.01.26 / 28.01.26

- examen 11.02.26 (oral)

o Module 3 - cours 04.03.26 / 11.03.26 / 18.03.26 / 25.03.26

- examen 15.04.26 (écrit)

o Travail personnel : - donnée du projet avril 2026

présentation intermédiaire juin 2026rendu du rapport septembre 2026

- défense finale janvier 2027

→ Horaire des cours : 8h30-12h00 / 13h30-17h00

Module 1 : Connaissances de base

1a) Rappel de	e dynamique des structures et analyse modale /05.11.25	
matin :	oscillateur simple oscillations libres non-amorties, amorties oscillations forcées (amplification dynamique)	YR
après-midi :		MD
1b) Sollicitati	on sismique et méthodes de calculs /12.11.25	
matin :	spectre de réponse	MD
•	méthode du spectre de répone (MSR) - bases	
après-midi :	modélisation numérique (théorie)	SR
1c) Modélisat	ion numérique et dynamique non-linéaire /19.11.25	
matin :	modélisation numérique (théorie) - suite	SR
après-midi :	dynamique non-linéaire approximation par augmentation de l'amortissement comportement sismique, règle des déplacements égaux	PL
1d) Comporte	ement sismique et modélisation numérique /26.11.25	
matin :	interaction dynamique sol-structure modélisation numérique : applications	SC/SR
après-midi :	éléments de sismologie effets de site (explications, exemples et significations)	СМ

EXAMEN MODULE 1 : 10.12.25 (ECRIT)

Module 2 : Dimensionnement parasismique de structures neuves

2a) Vulnérabilité sismique, méthode des forces de remplacement (SIA 261, 2020) / 07.01.26

matin:

- dégâts typiques, vulnérabilité sismique
- objectifs de protection
- · conception parasismique

après-midi : MD

application de la MFR sur un bâtiment neuf

2b) Béton armé : dimensionnement conventionnel et en capacité /14.01.26

matin: MD, SR, JP

- application de la MSR sur un bâtiment neuf (SCIA, CUBUS)
- dimensionnement conventionnel appliqué aux bâtiments en béton armé

après-midi:

- bases du dimensionnement en capacité (principes, mécanisme approprié, importance des caractéristiques des matériaux et des détails constructifs)
- dimensionnement en capacité appliqué aux bâtiments en béton armé

2c) Acier, bois et maçonnerie /21.01.26 AF 8h30-11h00 / AB 11h00-14h30 / MD 14h30-17h00

matin:

- · construction en acier
- construction en bois

après-midi:

• construction en maçonnerie

2d) Fondations et ponts /28.01.26

matin:

- fondations
- interaction sol-structure

après-midi :

 ponts (modélisation, particularités, dispositions constructives, dimensionnement)

EXAMEN MODULE 2: 11.02.26 (ORAL)

Module 3 : Evaluation parasismique de structures existantes

3a) Méthode de calcul basée sur les déformations (push over)/04.03.26

matin: MD • fondements théoriques et principe d'application des méthodes basées sur les déformations PLaprès-midi: • courbe de capacité (bâtiment béton armé) • application de la méthode push over sur un bâtiment existant en béton armé 3b) Construction en maçonnerie et béton armé : approches théoriques et numériques /11.03.26 matin: MD • vérification parasismique de bâtiments stabilisés par des murs en maconnerie PL après-midi: • stratégies de confortement • critères pour le choix d'une stratégie de confortement • solutions techniques et coûts des confortements • exemples concrets de projets réalisés 3c) Bâtiments existants : approches théoriques et numériques. Contexte, bases techniques et normatives /18.03.26 matin: SH, MD, SR, JP • vérification parasismique de bâtiments existants (MSR, push over) • gestion du risque sismique • aspects légaux (législation fédérale, ordonnances/ directives cantonales) SH après-midi: principes de la vérification parasismique (SIA 269/8) méthodes d'évaluation par étapes (OFEV) 3d) Stratégies et techniques de confortement /25.03.26 matin: ΑP • vérification parasismique de bâtiments stabilisés par des murs refends en maçonnerie et en béton armé : approche théorique et numérique PLaprès-midi:

vérification parasismique de bâtiments stabilisés par des murs en maçonnerie en moellons/pierres de taille avec planchers

flexibles