- Projets de recherche : /fr/recherche-appliquee/instituts/energy/projets-de-recherche/
- Infrastructure : /fr/recherche-appliquee/instituts/energy/infrastructure/
- Equipe : /fr/recherche-appliquee/instituts/energy/equipe/
- Agenda : /fr/recherche-appliquee/instituts/energy/agenda/
- Actualité : /fr/recherche-appliquee/instituts/energy/actualite/
- Projets de recherche : /fr/recherche-appliquee/instituts/energy/projets-de-recherche/
- Infrastructure : /fr/recherche-appliquee/instituts/energy/infrastructure/
- Equipe : /fr/recherche-appliquee/instituts/energy/equipe/
- Agenda : /fr/recherche-appliquee/instituts/energy/agenda/
- Actualité : /fr/recherche-appliquee/instituts/energy/actualite/
Medium-Frequency Transformer Design Optimization Using FEA-Supervised Machine Learning
Summary
Electrical and thermal networks
CERN/EU, HEIA-FR
David Cajander
Skills directory
January 2020 - December 2024
Development of an optimized design environment for muon collider acceleration magnets
This project focuses on the rapid design and prototyping of single-phase transformers for magnets power converters of the FCC (Future Circular Collider). The approach combines analytical modeling, multi-frequency FEA simulations, thermal and mechanical models, and supervised ANN-based surrogate models for an effective multi-objective optimization process (targeting accurate leakage and magnetizing inductances, AC losses, and thermal constraints). Validation was performed on transformers rated between 500 kVA and 3 MVA, operating from 50 Hz to 1200 Hz. The methodology achieves up to a ×100 reduction in computation time compared to classic FEA approaches, while maintaining sufficient accuracy for rapid prototyping and industrial design. Integrating neural-network-based surrogate models into non-linear optimization (NLO) loops resulted in more robust and efficient gradient descent and demonstrated more consistent convergence to optimal solutions.